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Abstract—The successful operation of unmanned air vehicles
requires software with a high degree of autonomy. Only if
high level functions can be carried out without human control
and intervention can complex missions, in a changing and po-
tentially unknown environment, be carried out successfully.

Autonomy software is highly mission and safety critical: fail-
ures, caused by flaws in the software cannot only jeopardize
the mission, but could also endanger human life (e.g., a crash
of an UAV in a densely populated area). Due to its large
size, complex architecture, and use of specialized algorithms
(planners, constraint-solvers, etc.), autonomy software poses
specific challenges for its verification, validation, and certifi-
cation.

We have carried out a survey among researchers and scien-
tists at NASA to study these issues. In this paper, we will
present major results of this study, discussing the broad spec-
trum of notions and characteristics of autonomy software and
its challenges for design and development. A main focus of
this survey was to evaluate verification and validation (V&V)
issues and challenges, compared to the development of “tra-
ditional” safety-critical software. We will discuss important
issues in V&V of autonomous software and advanced V&V
tools which can help to mitigate software risks. Results of this
survey will help to identify and understand safety concerns in
autonomy software and will lead to improved strategies for
mitigation of these risks.
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1. INTRODUCTION

The successful operation of unmanned air vehicles (UAV) re-
quires autonomous functions on various levels. Even in the
case, where a UAV is controlled remotely via a human pilot,
autonomous systems must make sure that the UAV remains
safe and controllable in case of a disruption of the command
and control radio link. More advanced missions, like un-
manned surveillance operations need a higher level of auton-
omy, because the UAVs are supposed to operate for a longer
time without human control and intervention. Complex mis-
sions even require that the UAV can successfully cope with
changing and unknown environments and carry out its oper-
ation under changing operation profiles without human con-
trol.

In modern systems, autonomous operation is realized in soft-
ware. Autonomy software is typically highly mission and
safety critical: failures, caused by flaws in the software can-
not only jeopardize the mission, but could also endanger hu-
man life. For example, a damaged UAV must—without hu-
man help and control—be able to avoid densely populated
areas for an emergency landing or crash.

Since autonomous operation has become important and de-
sirable in a multitude of areas, like robotics, space missions,
underwater exploration, and such, many approaches toward
this topic can be found. However, there is no comprehen-
sive and accepted notion of the risks of autonomy (or even,
what autonomy actually is), and mature technology to pro-
vide good guarantees for the safe and reliable operation is not
yet available.

In order to address these issues, the authors surveyed NASA
experts in autonomous systems and experts in software en-
gineering about autonomy software. Our questionnaire con-
tained 24 questions, to be answered numerically in the range
from 1 to 5 (disagree, partially disagree, neutral, somewhat
agree, fully agree), as well as a number of questions for which
textual answers were solicited. In this paper, we present the
numerical results as pairs: the mean values for the autonomy
experts and for the software engineering experts).

In the rest of this paper, we will present results from this sur-
vey and discuss characteristics of autonomy software, issues
in engineering and verification/validation of those systems.
Finally, we present some techniques and advanced V&V tool
that can help to mitigate the software risks inherent in auton-
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omy software.

2. AUTONOMY SOFTWARE

What is Autonomy Software?

Subjectively, autonomy software is concerned with the auto-
matic control of a system (e.g., UAV, spacecraft, robot, rover)
without the need of human intervention or control. A more
detailed look at the attributes, usually associated with auton-
omy software [7] reveals a broad range from self-diagnosing
to self-managing and self-adapting. The main point here is
that the software actually contains some components for exe-
cuting actions and making decisions. In principle, the auton-
omy software must be able to reason about the environment
and the system itself. Such a notion of autonomy software,
or autonomic software, as coined by IBM1, is very broad and
on a high level. Although a variety of work on the topic of
autonomy exists, especially in the area of agent-based sys-
tems (e.g., [4]) or autonomic computing, the authors tried to
obtain a more practical definition of what autonomy software
actually is.

In the survey, a number of software engineering experts and
experts in the area of autonomous systems had been asked to
give an informal definition of autonomy software. The spec-
trum of answers showed some strong commonalities, but sev-
eral important aspects couldn’t be more disjoint. In order
to illustrate the characteristics of autonomy software more
clearly, let us discuss three examples of NASA autonomy
software.

The SAFM (Shuttle Abort Flight Management) system is a
piece of software, which has been developed for the Shuttle
update program [5]. It is a Shuttle on-board system that ad-
vises the Shuttle crew about launch abort options in case of
an engine failure. In such a case, SAFM calculates the most
appropriate profile of the abort flight path (e.g., which emer-
gency landing strip to use as well as navigational aid) and
displays the data to the Shuttle pilot, who then will make the
final decision and carry out the required operations. In the
view of NASA managers, SAFM is an autonomous software
system, since it operates without ground control. Obviously,
SAFM is safety critical, although the software itself has no
means to actually control the Shuttle at any time.

The DART (Demonstration of Autonomous Rendezvous
Technology) spacecraft2 was intended as a prototype to
demonstrate automatic (and un-guided) in space rendezvous
and docking. Using its on-board sensors (image processing,
radar, inertial navigation, and GPS), the autonomy software
on-board the spacecraft controls the spacecraft to attempt a
rendezvous with another satellite without human interven-
tion. Due to problem(s) not yet determined, however, the ap-
proach was automatically aborted before the target had been
reached. Such an autonomous software system provides a

1www.research.ibm.com/autonomic
2www.nasa.gov/missionpages/dart/main/

higher level of autonomy, as the software can and has to con-
trol the entire system for an extended period of time. Still, the
system has a fixed “goal” and the number of external (envi-
ronmental) parameters is relatively small.

An autonomous planning and scheduling system for a Mars
rover (e.g., the PLEXIL [8] planning and execution system)
has an even more complex task. Based upon initial high-level
goals, the system has to automatically develop a plan on how
to achieve this goal. This plan has to fulfill all constraints, be-
fore it can be executed. During the execution of the plan, the
state of the system or the environment might change, making
it necessary for the autonomous system to re-plan the entire
activity, and possibly even revise achievable goals.

Although the various kinds of autonomy software work off
very different requirements, they share (at least) one charac-
teristic item: the autonomy software is mission and safety
critical, which means that failure of the autonomy software
can lead to mission failure and could endanger human life.
Therefore, verification and validation (V&V) of autonomy
software is an extremely important issue. In the following
sections, we will discuss results from our survey, regarding
the major characteristics of autonomy software and the soft-
ware engineering task to build such a system.

Characteristics of Autonomy Software

Despite all details on what comprises an autonomous sys-
tem, there was a clear agreement that “the autonomous sys-
tem must be able to execute a number of basic steps with-
out human intervention in order to achieve a given goal”
(4.14/4.25)3.

As to major components of a software architecture for au-
tonomy software, answers were more disjoint. Asked if a
typical autonomy system contains a planner, an executive
(for execution of the plan), and a state estimation compo-
nent, autonomy experts tended to agree somewhat stronger
(appr. 1 of the 5 levels) than the software engineering experts.
Asked if the structure and complexity of autonomy software
is the same as for a comparable traditional software sys-
tem, we received a slightly negative, but inconclusive answer
(2.71/2.17). On the other hand, there was no clear indication
that an autonomy software system should contain AI-based
or machine-learning algorithms (3.14/3.17), is agent based
(3.00/2.17), is model-oriented/model-based (2.57/3.00), or
has non-deterministic elements (3.29/3.00).

3. ENGINEERING AN AUTONOMOUS SYSTEM

An autonomous software system is a complex, safety-critical
piece of software of considerable size. Therefore, autonomy
software (as any software) must be designed and engineered
carefully. In a traditional sense, the software life-cycle phases

3In this paper, withA/B we denote that the mean value of the answers
(on a range from 1 (=disagree) to 5(=fully agree) given by autonomy experts
(A), those given by software engineering experts (B).
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of design, implementation, testing, and deployment are dis-
tinguished. Typical software processes order these phases se-
quentially (e.g., waterfall model), or in spirals. A graphical
representation of the phases of the software development—
starting from the system requirements—is depicted in Fig-
ure 1. Solid lines show the dependencies during the actual
development, dashed lines how the verification tasks relate to
previous stages in a backwards manner. Finally, validation
(dotted lines) indicate, how the software is tested against the
appropriate requirements and specifications.

Figure 1. V-shaped software development and V&V
process. Dependencies between the development phases are

indicated by solid arrows. Dashed arrows concern
verification activities; dotted lines validation activities.

In our survey, we asked, how the special characteristics of
autonomous software systems are and need to be reflected
in the way, how such software is designed and implemented.
Most software engineering experts expressed the opinion that
autonomy software cannot be developed using the same soft-
ware development process as traditional software (2.00). For
autonomy experts, using the same process seemed to be
a reasonable option (3.29). Likewise, there was less spe-
cial expertise/experience required from the development team
(2.86/3.50). The overall productivity of the software devel-
opment (in lines of code per person-month) was rated roughly
the same as for traditional software (2.43/3.33).

Members of both areas expressed the specific and highly im-
portant role of system requirements (4.00/3.67). These re-
quirements must not only capture the underlying autonomy
execution machinery, but must also express the characteris-
tics and requirements of the model. Since model accuracy
and consistency is important, such high rating was expected.

Much less clear were the trends in the design and program-
ming paradigm. The survey revealed that neither an object-
oriented paradigm (2.71/2.50) nor model-based/model-
oriented design principles (2.57/3.00) are favored in any
sense. Also a distributed or multi-threaded implementation
(which might be suitable for an agent-based design) seemed

to be even less important (2.00/1.33).

Whereas it seems that for the design and implementation of
an autonomy system pretty much the same process can be
used to achieve roughly the same productivity, things are very
different for the verification and validation activities. It was
a consensus that current best practices for V&V are not quite
sufficient for autonomy software (2.14/1.83). Whereas the
autonomy experts are fairly neutral regarding the suitability
of a traditional V&V process, V&V experts call for a differ-
ent or augmented V&V process (3.29/1.83). In their opinion,
also the required effort of V&V for an autonomy system com-
pared to the V&V of a traditional system (in order to achieve
the same level of reliability) is somewhat higher (1.83 com-
pared to2.57 for autonomy experts). However, the range of
answers was very wide, ranging from “almost none” and “not
a lot” to “50% of our work” to “all of my time”.

According to the survey, additional effort spent on V&V of
autonomous software is mainly caused by three issues:

1. the larger size and higher complexity of the valid input
space, which can contain system status, environmental infor-
mation, intended goals, and constraints,4

2. the complexity of the program logic (often highly com-
plicated search-based, iterative algorithms like planners or
reasoning engines) required to derive the answer in the au-
tonomous system, and
3. the size and complexity of the domain model and descrip-
tion of the environment. This domain model has to be vali-
dated in addition to the execution software itself.

4. ERRORS AND RISKS IN AUTONOMOUS
SYSTEMS

Risks can come in from many areas/sources and can show up
during the entire software and system life-cycle. Especially
for a safety-critical system, like autonomy software, the risk
can be considerable, leading to costly mission failures or po-
tential loss of human life (e.g., for the SAFM advisory sys-
tem, or UAVs). With each potential risk, a probability is at-
tached, indicating how likely such a failure event is. There
is substantial work in the literature on this topic (e.g., [2] for
software risk identification). In this survey and paper, we fo-
cus on coding errors and risks. Errors which are introduced
during implementation can pose a substantial risk for the en-
tire software system, as many incidents show. In traditional
safety-critical software, there is a fairly stable list of “usual
culprits”, i.e., errors (or error classes), which tend to be par-
ticularly harmful. Typical examples include buffer overrun
errors, uninitialized variables, or synchronization problems in
distributed system. Table 1 shows a list of important coding
error classes for safety-critical software (from [6]). For each
error class, the importance to find such bugs (proportional to
the risk), as well as the difficulty to locate such errors in the
text is given. This list is the result of a survey; similar er-
ror ratings were obtained in most of the application domains

4Often, histories of these values also form part of the valid input space.
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(NASA, aerospace industry).

Obviously, such errors can show up in autonomy software.
A question, which we addressed in our survey was, how dif-
ferent such a list would look like in the area of autonomy
software. Results of the survey showed that the coding er-
rors, found in autonomy software are not specific to auton-
omy software; most of these errors could be found in tradi-
tional software as well.

On one hand, this result is reassuring in the sense, that no
fundamentally different V&V tools must be designed. On
the other hand, subtleties in autonomy-specific errors (e.g.,
modeling errors) are not yet fully understood.

Imp Diff Property

5 3 Divide by zero
5 3 Array index overrun
5 5 Mathematical functions sin, cos, tanh
5 1 Use of un-initialized variables or constants
3 3 No unused variables or constants
4 2 All variables explicitly declared
5 5 Proper synchronization in multi-threaded execution
4 4 Incorrect computation sequence
5 3 Loops are executed the correct number of times
5 3 Each loop terminates
3 2 All possible loop fall-throughs correct

4 3 Priority rules and brackets in arithmetic expression
evaluation used as required to achieve desired results

5 5 Resource contention
5 2 Exception handling
5 5 The design implemented completely and correctly
4 2 No missing or extraneous functions.
5 1 Error messages and return codes used
5 1 Good code comments

Table 1. Sample Questionnaire for traditional safety-critical
code

5. RISK M ITIGATION

In order to mitigate the risks of using autonomy one can im-
prove the verification and validation process for such systems.
From our survey it emerged that the surveyed autonomy sys-
tem developers didn’t use any special/custom tools for V&V,
nor did they consider the current best practices for software
V&V adequate to ensure reliable autonomous systems will
be developed. Current best practice for software V&V is
testing, hence we here consider three additional approaches
to mitigate risk: static analysis, model checking and runtime
analysis. For each of these techniques we relate experimen-
tal results to show what the expected risk mitigation for each
technique and error-class combination is. For brevity we only
consider a few relevant software error-classes, that are not au-
tonomy specific. Note that our survey results indicate that
errors in autonomy software are similar to errors commonly
found in any software system - the complexity of V&V is
therefore not in the type of errors, but rather the complexity
of the software and the environment it operates in.

Methods and Approaches

We consider the following three advanced V&V techniques
that can augment testing for autonomy V&V:

Static analysisThis approach allows a program to be ana-
lyzed without having to execute it, and typically checks for
the potential of run-time errors such as null pointer deref-
erences, array out of bounds accesses, divide-by-zero and
uninitialized variable usage. The strength of this technique is
that it evaluates the program operations for all possible execu-
tion environments, and the weakness is that it might produce
false warnings.
Model CheckingThis technique allows the analysis of all
possible program behaviors for essentially any behavioral
property violation - although it performs best on properties
such as deadlocks and race violations that traditional testing
cannot easily detect. Its major weakness is that it doesn’t
scale to large programs.
Run-time analysisThis is an advanced form of testing where
the execution of the program is monitored to check for some
common errors (such as potential for deadlocks, data races,
etc.) as well as functional properties of the program under
test. This approach requires program instrumentation, that
can often be achieved through aspect-oriented programming.

Tools and Techniques for V&V

For static analysis we considered two commercial tools,
namely PolySpace5 and Coverity6. PolySpace does a data-
flow analysis based on abstract interpretation. Coverity does
a path sensitive analysis and has a lower error detection rate,
i.e., it might miss to flag errors. However, Coverity rarely
produces false warnings, whereas PolySpace produces large
numbers of false warnings that the user need to evaluate to de-
termine whether they are real errors or not. They also behave
quite differently in setup and running times: Coverity is easy
to configure and runs in a matter of minutes and PolySpace is
very complicated to get running and typically runs for days on
programs of the order of30, 000 lines of code. Both tools ana-
lyze C and C++ programs and they were evaluated on NASA
flight code: one unmanned autonomous mission and a rele-
vant portion of SAFM code.

For model checking we used the Java PathFinder (JPF)7

model checker for Java code. It is an explicit-state model
checker that can handle programs up to10, 000 lines of code.
Run-time analysis was done with the commercial Temporal
Rover8 tool as well as the special purpose Java tool called
JPaX [3]. These tools were all evaluated on a Java version of
code for a prototype Mars Rover and the results of the exper-
iments conducted were first reported in [1].

As for the classes of errors that we consider here, we focus
on the errors that was present (or is a concern) in the three

5www.polyspace.com
6www.coverity.com
7javapathfinder.sourceforge.net
8www.time-rover.com
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systems we mention above (unmanned and manned NASA
flight software and the Rover code). These are typical errors
that one would anticipate in code and since the three systems
are all autonomy related therefor also in autonomy code.

After analyzing the three systems with the given techniques
we formed a qualitative view of the risk mitigation obtained
by each tool - the results are shown in Table 2. Note that al-
though the experiments reported in [1] produced quantitative
results, the analyzes done here were not done in a controlled
fashion and hence the results are not as precise.

Only in two cases did our experiments validate instances
where we believed our tools will perform well and it ac-
tually did perform well: Coverity on finding uninitialized
variables and model checking with JPF for detecting dead-
locks/dataraces. The worst cases are when we believed the
tools can perform a good job and then they are either not ap-
plicable at all or they perform very badly. For example, we
believed Coverity can detect divide-by-zero errors, but in fact
it cannot and similarly, although PolySpace can detect these
it flags too many false warnings for the results to be useful.
Model checking can in theory be very good at finding some
of the error classes, but our current set of experiments were
not capable of determining its strengths.

Note that runtime analysis, which is just an advanced form of
traditional testing, performs the best in our experiments. This
is mostly because some of the more behavioral types of er-
rors (such as faults in error handling code) can only reliably
be detected by running the programs. This is somewhat wor-
rying for risk mitigation for autonomy in general, since many
of the subtle errors in autonomy is more likely to be in aspects
of the code where static analysis for example is not likely to
perform well - finding errors in models for example. Clearly
more research will be required to develop new V&V methods
to mitigate some of these risks. Model checking for exam-
ple has been shown to be valuable to analyze models used in
vehicle health management, and, testing where the tests are
designed to give coverage of the models seem like a useful
avenue for investigation.

In summary it seems that the current state-of-the-art in V&V
tools can find errors that are present in autonomy software,
but not as reliably well as one would have hoped. In addition,
tools for detecting behavioral errors, which one can easily
argue will be the most complex to find in autonomy systems,
are not as developed as the ones for finding (simple) runtime
errors.

6. CONCLUSIONS

In this paper, we have presented results on a survey about
autonomy software, its characteristics and V&V issues that
was carried out at NASA in summer 2005. We had asked
software engineering experts and experts in autonomy soft-
ware. Although most of the projects originated from a NASA
background (Shuttle Autonomy, Rovers, Robotics, etc.), the

main characteristics of a safety- or mission-critical autonomy
software and associated verification and validation challenges
seem to be the same across the board, indicating that results
of our survey can be carried over to other application domains
like UAV.

The main findings of the survey were:

• NASA autonomy experts considered there to be no mean-
ingful difference between autonomy software and non-
autonomy software in its structure, development process, and
V&V process. Whereas software engineering experts be-
lieved that there would be a difference in development and
V&V process.
• There was however consensus that current best practices
in V&V is not suitable for autonomy software. A previous
experiment [1], where it was shown that testing (i.e. current
best practice) does not find as many defects as more advanced
V&V techniques, also supports this view.

However as the qualitative results in Table 2 indicate even ad-
vanced V&V techniques don’t do an adequate job of finding
defects from important error classes. Furthermore, our survey
indicated that some autonomy experts (and most of the soft-
ware engineering experts) felt that certain behavioral errors in
autonomy systems, especially errors in models, can be very
hard to detect and therefore can seriously undermine relia-
bility. Currently, only preliminary results for tools detecting
such errors are available, and no commercial tools exist th de-
tect such defects. It is therefore clear that more investment in
the research and development of V&V techniques and tools
specifically geared towards these behavioral and model errors
is needed.
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